Vertex Form of a Quadratic

<u>Vertex form</u> of a quadratic function is given by: $f(x) = a(x - h)^2 + k$, where (h, k) is the vertex of the parabola and					
= h is the axis of symmetry.					
If the equation is $f(x) = 2(x - 3)^2 + 4$. The vertex is What is the AOS?					
If the equation is $f(x) = 3(x + 7)^2 - 5$. The vertex is What is the AOS?					

Remember: The number INSIDE the parenthesis is the OPPOSITE of the x-value of the vertex and the number at the end of the equation is the y-value of the vertex.

We will apply what we learned about completing the square to convert standard form quadratics into vertex form.

Completing the Square to Convert a Quadratic Equation from Standard Form to Vertex Form:

		Example: x^2 coefficient = 1	Example: x^2 coefficient $\neq 1$
		$y = x^2 + 12x + 32$	$y = 2x^2 - 4x + 5$
1.	Isolate the x^2 and x terms so move the constant to the other side of the equal sign.		
1a.	You ONLY need this step if x^2 coefficient $\neq 1$! If x^2 coefficient $\neq 1$, factor the coefficient out of both		Factor out leading coefficient of 2. BE SURE to factor the 2 out of <u>BOTH</u> terms on the right.
2.	Add + to BOTH sides of the equal sign to KEEP THE EQUATION BALANCED. Fill in the + with the # that completes the square (half of the coefficient of the <i>x</i> -term squared)		When we have a coefficient ≠ 1, add a double parenthesis to side without the variables. Both sides must be <u>multiplied</u> by 2.
	squareay.		** See <u>Special Note</u> to avoid
			common pitfalls
** <u>S</u>	 pecial Note: Be sure to factor the # out of BO When you factor out the #, don't 	T <u>H</u> terms on the right side of t terms to take that into accou	common pitfalls ne equation. nt on both sides.
** <u>§</u> 3.	 Be sure to factor the # out of BO When you factor out the #, don't Simplify left side and factor the perfect square trinomial 	<u>TH</u> terms on the right side of the side o	common pitfalls ne equation. nt on both sides.
** <u>\$</u> 3. 4.	pecial Note: Be sure to factor the # out of BO • When you factor out the #, don't Simplify left side and factor the perfect square trinomial Isolate the y-term (move the constant back)	T <u>H</u> terms on the right side of the second se	common pitfalls ne equation. nt on both sides.
** <u>\$</u> 3. 4.	pecial Note: • Be sure to factor the # out of BO • When you factor out the #, don't Simplify left side and factor the perfect square trinomial Isolate the y-term (move the constant back)	T <u>H</u> terms on the right side of the fight side of the fight side of the forget to take that into account of the forget to take that into account of the forget to take that into account of the forget to take the forget to t	common pitfalls ne equation. nt on both sides. Vertex:

Practice Problem 1:	$y = x^2 - 8x + 3$	Practice Problem 2:	$y = 3x^2 + 12x + 1$
1.		1.	
1a.		1a.	
2.		2.	
3.		3.	
4.		4.	
Vertex:	AOS:	Vertex:	AOS:

Why the new format?

The new structure of the quadratic equation allows us to determine the **transformation(s)** of the parent function. Each "piece" of the newly constructed equation, helps to tell a story. The story is the description of the transformation(s).

If there is a:	here is a: Description of Transformation			
	Negative Sign in front?	Reflection over the x-axis		
Coefficien	t in front of Parenthesis?	Whole #? Vertical Stretch by a factor of "#"	Fraction? <u>Vertical Shrink</u> by a factor of "#"	
		Think of the Mii characters		
Number Added or Su	btracted to x <u>INSIDE</u> the parenthesis?	Added? Shift <u>Left</u> # of units	Subtracted? Shift <u>Right</u> # of units	
Number Added or Subtracted OUTSIDE the parenthesis?		Added? Shift <u>Up</u> # of units	Subtracted? Shift <u>Down</u> # of units	
Let's look at an example	$y = -3(x + 2)^2 - 4$	 Here is how the story would be told The function is reflected over the x-axis. 		

• It has a vertical stretch by a factor of 3.

• The vertex shifts 2 left and 4 down from the origin.

Describe the transformation of the function on a separate piece of paper.

- 1. $y = -2(x 3)^2 + 4$ 2. $y = 4(x + 4)^2 - 3$ 3. $y = x^2 + 6x + 5$ 4. $y + 2x^2 = 8x - 3$
- 5. $g(x) = (x 2)^2 5$ 6. $g(x) = -3(x + 4)^2 + 1$