Vertex Form of a Quadratic

Vertex form of a quadratic function is given by: $f(x)=a(x-h)^{2}+k$, where (h, k) is the vertex of the parabola and $x=h$ is the axis of symmetry.

If the equation is $f(x)=2(x-3)^{2}+4$. The vertex is \qquad . What is the AOS? \qquad

If the equation is $f(x)=3(x+7)^{2}-5$. The vertex is \qquad . What is the AOS? \qquad

Remember: The number INSIDE the parenthesis is the OPPOSITE of the x-value of the vertex and the number at the end of the equation is the y-value of the vertex.

We will apply what we learned about completing the square to convert standard form quadratics into vertex form.

Completing the Square to Convert a Quadratic Equation from Standard Form to Vertex Form:

	Example: x^{2} coefficient $=1$	Example: x^{2} coefficient $\neq 1$
	$y=x^{2}+12 x+32$	$y=2 x^{2}-4 x+5$
1. Isolate the x^{2} and x terms ... so move the constant to the other side of the equal sign.		
1a. You ONLY need this step if x^{2} coefficient $\neq 1$! If x^{2} coefficient $\neq 1$, factor the coefficient out of both		Factor out leading coefficient of 2. BE SURE to factor the 2 out of BOTH terms on the right.
2. Add + \qquad to BOTH sides of the equal sign to KEEP THE EQUATION BALANCED. Fill in the + \qquad with the \# that completes the square (half of the coefficient of the x-term squared).		When we have a coefficient $\neq 1$, add a double parenthesis to side without the variables. Both sides must be multiplied by 2 . ** See Special Note to avoid common pitfalls

**Special Note: - Be sure to factor the \# out of BOTH terms on the right side of the equation.

- When you factor out the \#, don't forget to take that into account on both sides.

3. Simplify left side and factor the perfect square trinomial			
4. Isolate the y-term (move the constant back)			
	Vertex:	VOS:	AOS:

Practice Problem 1: $\mathrm{y}=\mathrm{x}^{2}-8 \mathrm{x}+3$		Practice Problem 2: $\mathrm{y}=3 \mathrm{x}^{2}+12 \mathrm{x}+1$	
1.		1.	
1 a.		1 a.	
2.		2.	
3.		3.	
4.		4.	
Vertex:	AOS:	Vertex:	AOS:

Why the new format?

The new structure of the quadratic equation allows us to determine the transformation(s) of the parent function. Each "piece" of the newly constructed equation, helps to tell a story. The story is the description of the transformation(s).

If there is a :	Description of Transformation	
Negative Sign in front?	Reflection over the x -axis	
Coefficient in front of Parenthesis?	Whole \#? Vertical Stretch by a factor of " $\#$ " Think of	Fraction? Vertical Shrink by a factor of "\#" characters
Number Added or Subtracted to x INSIDE the parenthesis?	Added? Shift Left \# of units	Subtracted? Shift Right \# of units
Number Added or Subtracted OUTSIDE the parenthesis?	Added? Shift Up \# of units	Subtracted? Shift Down \# of units

Let's look at an example....

$$
y=-3(x+2)^{2}-4
$$

Here is how the story would be told....

- The function is reflected over the x-axis.
- It has a vertical stretch by a factor of 3 .
- The vertex shifts 2 left and 4 down from the origin.

Describe the transformation of the function on a separate piece of paper.

1. $y=-2(x-3)^{2}+4$
2. $y=4(x+4)^{2}-3$
3. $y=x^{2}+6 x+5$
4. $y+2 x^{2}=8 x-3$
5. $g(x)=(x-2)^{2}-5$
6. $g(x)=-3(x+4)^{2}+1$
