USING THE SLOPE FORMULA

1. Write Formula:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
2. Write Template:
$m=\frac{(\quad)-(\quad)}{(\quad)-(\quad)}$
\#1
\#2
3. Label your TWO points: (x, y) and (x, y)
4. PLOP your values into proper spots
5. Solve your problem... ALWAYS change a double negative to a positive before combining and EITHER,

Use Integer Rules

If they are the SAME SIGN, keep the sign and ADD.

If they are DIFFERENT SIGNS, take the sign of the larger \# and SUBTRACT.

Subtraction goes

Addition goes

Slope is ALWAYS a fraction. It represents the $\frac{\text { change }}{\text { change }} \frac{\text { in }}{} \frac{y}{x}$, so both \#s of the fraction have meaning.
Reduce your answer to lowest terms.
Two negatives in the fraction, simplify to BOTH positive.
If ONLY one negative \#, move the negative SIGN ONLY to the top.

Examples:

Find the slope of the line that passes through the points $(-7,5)$ and (3, -2).

1. Write the formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
2. Write Template: $\quad m=\frac{(\quad)-(~)}{(\quad)-(~)}$

\#1 \#2

3. Label $(-7,5)$ and $(3,-2)$

$$
x, y \quad x, y
$$

4. PLOP into template $\quad m=\frac{(-2)-(5)}{(3)-(-7)}$
5. Solve: $m=\frac{-7}{10}$

Find the slope of the line that passes through the points $(8,-1)$ and $(4,3)$.

1. Write the formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
2. Write Template: $\quad m=\frac{(\quad)-(~)}{(\quad)-(~)}$
\#1 \#2
3. Label $(8,-1)$ and $(4,3)$

$$
x, y \quad x, y
$$

4. PLOP into template $\quad m=\frac{(3)-(-1)}{(4)-(8)}$
5. Solve: $\quad m=\frac{4}{-4}=\frac{-1}{1}$
