Represent each using an algebraic expression.

1. If Nick has \mathbf{x} dollars and his brother Kevin has three times as much, express algebraically how much money Kevin has.

$$
\begin{gathered}
x=\$ \text { Nick has } \\
=\$ \text { Kevin has }
\end{gathered}
$$

3. An orange costs cents. Represent the cost of a dozen oranges.
$\ldots \quad$ _ cost of a dozen oranges
4. If Peter weighs \mathbf{x} pounds, represent his weight after he gains 10 pounds.
$x=$ Peter's weight
\qquad = Peter's weight after he gains 10 pounds
5. Represent the cost of 5 pencils that cost \mathbf{c} cents each.
$\mathrm{c}=$ cost of one pencil
\qquad $=$ cost of 5 pencils
6. A hat costs $\$ 4$. Represent in dollars the cost of \mathbf{h} hats.
\qquad = cost of one hat $=$ cost of h hats
7. If Sara weighs m pounds, represent her weight after she loses 5 pounds.
m = Sara's weight
\qquad = Sara's weight after she loses 5 pounds
8. The width of a rectangle is \mathbf{x} feet. Represent its length in feet if the length is 8 times the width.

$$
\begin{aligned}
& x=\text { width } \\
& \text { = length }
\end{aligned}
$$

10. If 3 pencils cost \mathbf{x} cents, represent in cents the cost of one pencil.
$x=$ cost of 3 pencils
= cost of one pencil

Write an equation defining $x=$ the number as the variable and solve. Write your answer as a statement.

1. If three times a number is increased by 15 , the result is 36 . Find the number.
Let $\mathrm{x}=$ the number

The number is
3. If 23 is subtracted from twice a number, the result is 35 . Find the number.
Let $\mathrm{x}=$ the number

The number is
5. If a number is added to twice itself, the result is 36 . Find the number.
Let $\mathrm{x}=$ the number
2. If 4 times a number is decreased by 24 , the result is 28 . Find the number.
Let $\mathrm{x}=$ the number
4. If 18 more than 5 times a number is 13 , find the number. Let $x=$ the number

The number is
6. If twice a number is increased by 34 , the result is 20 . Find the number.
Let $\mathrm{x}=$ the number

The number is \qquad .

The number is \qquad .

