Name:

Date:

A literal equation is an equation that has several letters or variables. For example, the formula for the area of a circle, $A=\pi r^2$ is a literal equation. To solve a literal equation in terms of one of the variables, we use what we know about solving equations to **rearrange and isolate** the variable we are solving for. Keep in mind, to isolate the unknown variable, ask "what is it joined to?" and "how is it joined?", then perform the inverse operation* to both sides as a whole.

*Inverse Operations: Addition and		d Subtraction		Multiplication and Division		Square and Square Root	
Examples:							
1. ax = b for x		2.	x + a = 7	for x	3. 9x – 24	a = 6a + 4x	for x
<u>ax = b</u> a a Divid	de both sides by a b		x + a = 7 <u>-a -a</u> x = 7 - a	Subtract a from both sides	- <u>4x</u> 5x –	4a = 6a + 4x -4x 24a = 6a 24a +24a	Move all x's to one side and combine LIKE terms
	$\mathbf{x} = \frac{\mathbf{b}}{\mathbf{a}}$			x = 7 - a	<u>5</u>	<u>x = 30a</u> 5	x = 6a
4. $\frac{x}{r} = v$ for x		5.	A = ½ bh	for h			
$\frac{\mathbf{x}}{\mathbf{x}} = \frac{\mathbf{v}}{\mathbf{x}}$	vrite as a proportion		$\frac{A}{1} = \frac{bh}{2}$ Rewrite moving bh out of 'no man's land' and creating a proportion				
x = rv Cros	ss multiply		<u>2A = I</u> b		multiply then div	ide by b	$h = \frac{2A}{r}$
	x = rv						b

Solve each equation for the indicated variable. Show all your work in your notebooks.

1.	3x - e = r for x	2.	r + sx = t for x
3.	m = 2(x + n) for x	4.	4x - 5c = 3c for x
5.	A = 6h for h	6.	L = c - s for c
7.	D = rt for t	8.	2s = n(a + 1) for a
9.	5j + s = t - 2 for t	10.	P = 2a + b for b
11.	h + p = 3(k – 8) for k	12.	$P = \frac{R-C}{N}$ for R

Please consider the following problems as there is an extra step involved:

13.	jx + d =	c – kx for x	14.	
	jx + d = c - kx $+kx + kx$	move all x's to one side		
	jx + kx + d = c			
	<u>-d-d</u>			
	$\mathbf{j}\mathbf{x} + \mathbf{k}\mathbf{x} = \mathbf{c} - \mathbf{d}$	*Extra stepsince the left side each		
	$\frac{x(j+k) = c - d}{(j+k) (j+k)}$ have an x in common, reverse distribute to isolate the x, then divide by $(j + k)$.			
		$\mathbf{x} = \frac{\mathbf{c} - \mathbf{d}}{(\mathbf{j} + \mathbf{k})}$		

fgx = 3h(e - 2x) for x