The table below describes the transformations of the parent function for radical/cubed root equations.

Transformation	$f(x)$ Notation	Examples
Horizontal Translation Graph shifts left or right	$f(x-h)$	$g(x)=\sqrt{x-2} \quad 2 \text { units right }$ $g(x)=\sqrt{x+3} \quad 3 \text { units left }$ *If negative in front of x under radical, translation is affected. Always verify in calculator.
Vertical Translation Graph shifts up or down	$f(x)+k$	$\mathrm{g}(\mathrm{x})=\sqrt{x}+7 \quad 7$ units up $g(x)=\sqrt{x}-1 \quad 1$ units down
Reflection Graph flips over x - or y-axis	$\begin{aligned} & f(-x) \\ & -f(x) \end{aligned}$	$g(x)=\sqrt{-x}$ reflects over y-axis (starting point is affected) $\mathrm{g}(\mathrm{x})=-\sqrt{x}$ reflects over the x -axis
Vertical Stretch or Shrink Graph stretches away from or shrinks toward x -axis	$a \cdot f(x)$	$\mathrm{g}(\mathrm{x})=4 \sqrt{x}$ more narrow by a factor of 4 $g(x)=\frac{1}{5} \sqrt{x}$ wider by a factor of $\frac{1}{5}$

$$
f(x)=-2 \sqrt{x+2}-5
$$

Here is how the above story would be told....

- The function is reflected over the x-axis.
- The function is more narrow by a factor of 2 .
- The starting point shifts 2 left and 5 down from the origin.

[^0]
[^0]: **Watch out for the following. If you have a coefficient under the radical, it changes different than you think:

 Horizontal Stretch or Shrink
 Graph stretches away from or shrinks toward y-axis
 f(ax)

 $$
 \begin{aligned}
 & \mathrm{g}(\mathrm{x})=\sqrt{3 x} \text { shrink by a factor of } \frac{1}{3} \\
 & \mathrm{~g}(\mathrm{x})=\sqrt{\frac{1}{2} x} \text { stretch by a factor of } 2
 \end{aligned}
 $$

