Name:

Date:

In Exercises 1–21, solve the equation. Check your solution(s). Show all work on a separate piece of paper.

1.
$$\sqrt{x} = 4$$

2. $8 = \sqrt{n} - 3$
3. $3\sqrt{a} - 15 = -6$
4. $\sqrt{s-3} + 7 = 11$
5. $6\sqrt{t-2} = 12$
6. $3\sqrt{3x-6} + 2 = 20$
7. $\sqrt{d} = \sqrt{5d-8}$
8. $\sqrt{3c-2} = \sqrt{4c-6}$
9. $\sqrt{4b-4} = \sqrt{2b+4}$
10. $\sqrt{z-12} = \sqrt{\frac{z}{3}-3}$
11. $\sqrt{\frac{2v}{3}+10} = \sqrt{4v-10}$
12. $\sqrt{3w+1} - \sqrt{6w} = 0$
13. $5 = \sqrt[3]{x}$
14. $-3 = \sqrt[3]{x+2}$
15. $\sqrt[3]{7m-3} = \sqrt[3]{m+9}$

- **16.** $k + 6 = \sqrt{2k + 15}$ **17.** $\sqrt{-1 2b} = b$ **18.** $\sqrt{3p + 19} = p 3$
- **19.** $r-1 = \sqrt{r+5}$ **20.** $\sqrt{2x-1} + 6 = 3$ **21.** $k-1 = \sqrt{5k-9}$
- **22.** The period *P* (in seconds) of a pendulum is given by the function $P = 2\pi \sqrt{\frac{L}{32}}$, where *L* is the pendulum length (in feet). A pendulum has a period of 16 seconds. Is this pendulum 16 times as long as a pendulum with a period of 4 seconds? Explain your reasoning.