Date:

A step function is a discontinuous function (you must lift your pencil off the paper to draw it) that, when graphed, appears as a series of disconnected line segments resembling steps on a staircase.

Two common step functions are called the **<u>floor</u>** and <u>**ceiling**</u> functions.

The floor and ceiling functions give you the **<u>nearest integer</u>** up or down.

Below are examples of a STEP FUNCTION GRAPHS:

A wholesale t-shirt manufacturer charges the following prices for t-shirt orders:

- \$20 per shirt for shirt orders up to 20 shirts.
- \$15 per shirt for shirt between 21 and 40 shirts.
- \$10 per shirt for shirt orders between 41 and 80 shirts.
- \$5 per shirt for shirt orders over 80 shirts.

Name:		Date:	Date:		Period:		
Evaluate the following Floor/Ceiling Functions.							
1.	[π]	2.	$\lfloor -\frac{1}{4} \rfloor$	3.	$\left\lceil \frac{1}{2} \right\rceil$	4.	[π]
5.	[1.03]	6.	$\lfloor \frac{1}{2} \rfloor$	7.	[1.03]	8.	$\left[-\frac{1}{4}\right]$
9.	[-256]	10.	[-1.5]	11.	[-3.2]	12.	[2.23]
13.	[3.506]	14.	[7.29]	15.	[2.564]	16.	$\lfloor \sqrt{5} \rfloor$
17.	[-0.7]	18.	[8]	19.	$\left\lfloor \sqrt{2} \right\rfloor$	20.	[—8.5]

Complete the tables and graphs for the following problems.

21. Phone companies determine the price of a call by rounding the length of the call to a certain time period (usually the nearest minute).

Complete the table and graph if Bell Atlantic charges \$0.25 each minute, in addition to a \$0.25 connection fee for each call.

Minutes	Cost (\$)
0 < x ≤ 1	
1 < x ≤ 2	
2 < x ≤ 3	
3 < x ≤ 4	
4 < x ≤ 5	
5 < x ≤ 6	

*Use cost in cents to graph. For example, 0.20 = 20 on y-axis.

22. The table shows the cost of mailing a letter that weighs x ounces. Graph the step function and complete the second table for packages with the provided weights.

Weight (oz.)	Cost (\$)		
0 < x ≤ 1	0.40		
1 < x ≤ 2	0.60		
2 < x ≤ 3	0.90		
3 < x ≤ 4	1.10		
4 < x ≤ 5	1.30		
5 < x ≤ 6	1.60		

Weight (oz.)	Cost (\$)		
1.26	0.40		
4.29	0.60		
0.98			
2.55			
6			
3.01			

*Use cost in cents to graph. For example, 0.20 = 20 on y-axis.

Step Function Notes