Show appropriate work on a separate piece of paper.
Find the first four terms of each sequence defined by the recursive or explicit formula.

1.	$a_{n}=n^{2}-1$	2.	$a_{1}=2$ $a_{n}=3 a_{n-1}$
3.	$a_{1}=1$	4.	$a_{n}=3(2)^{n-1}$
$a_{n}=2 a_{n-1}+3$			

Determine whether the sequence is arithmetic, geometric, or neither.
5. $2,5,9,14,20, \ldots$
6. $-5,-2,1,4,7, \ldots$
7. $3,8,13,18,23, \ldots$
8. $-3,0,6,15,27, \ldots$
9. $1,3,9,27,81, \ldots$
10. $1,5,6,10,11, \ldots$
11. $1,2,3,4,5, \ldots$
12. $7,12,17,22,27, \ldots$
13. $1,2,4,8,16, \ldots$

Find the next three terms in each sequence and write the explicit rule.
14. $1,6,11,16,21, \ldots$

Find the indicated term.
16. $3^{\text {rd }}$ term; $a_{n}=4 n+6$

Write the explicit formula for the nth term of the arithmetic sequence with the given characteristics
18. $a_{10}=22, d=3$
20. $a_{8}=21, a_{14}=45$
15. $4,7,10,13,16, \ldots$
19. $a_{21}=147, d=11$
21. $a_{5}=27, a_{10}=52$

Write the recursive rule for the arithmetic sequence with the given characteristics.
22. $a_{1}=-3, \quad d=8$
23. $a_{1}=2, \quad d=-2$

Find the indicated term given two terms in an arithmetic sequence.
24. $9^{\text {th }}$ term; $a_{3}=12$ and $a_{5}=27$
25. $12^{\text {th }}$ term; $a_{2}=8$ and $a_{6}=20$

Write the explicit formula for the nth term of each geometric sequence.
26. $-3,-6,-12,-24, \ldots$
27. $2,-6,18,-54, \ldots$

Write the recursive rule for the geometric sequence with the given characteristics.
28. $a_{1}=4$ and $r=0.2$
29. $64,16,4,1, \ldots$

