A sequence is a function. The set of inputs (the domain) is a subset of the natural numbers, i.e. $\{1,2,3,4, \ldots\}$. A sequence is often shown as an ordered list of numbers, called the terms or elements of the sequence.

The input is simply the number's place in line and the output is the actual number in the list. Sometimes it is helpful to write them as a table of " x / y " values.

Different Types of Notations

Consider the sequence below. If we represent this sequence with the letter a, please note the different notations you may see.

$$
4,8,16,32,64,128,256
$$

Try these:
[1] Find a(3)
[2] Find $a(1)+a(7)$
[3] Find a_{2}
[4] Find $\left(a_{1}\right)^{2}$
[5] Find $a_{5}-a_{4}$
[6] Solve for $\mathrm{n}: \mathrm{a}(\mathrm{n})=128$

A sequence is finite if it has a limited number of terms and infinite if it does not. Finite sequence: $\{4,8,12,16 \ldots, 64\}$ The first of the sequence is 4 and the last term is 64 . Since the sequence has a last term, it is a finite sequence

There are two types of Sequences

Arithmetic Sequence

- Each term is obtained by ADDING the same number (called a common Difference (d)) to the preceding term
- Constant Rate of Change makes it linear
- A Discrete Linear Function*

Geometric Sequence

- Each term is obtained by MULTIPLYING the same number (called the common ratio (\mathbf{r})) to the preceding term
- Increasing Rate of Change makes it exponential
- A Discrete Exponential Curve*
**A Discrete Function means you do not connect the points in the graph
- First Term is a_{1}
- Any time you see the notation $a(n-1)$ or a_{n-1}, circle the ENTIRE thing, and replace it with the words "PREVIOUS TERM".

