Ex: $\quad 8^{2}$ means 8 squared. To calculate, multiply 8 times $8=64$
SQUARE ROOT (RADICAL): A number that produces a quantity when multiplied by itself. The symbol for the square root is the radical sign, $\sqrt{\#}$.

Ex: $\quad \sqrt{9}=3 \quad \sqrt{49}=7$ because because $3 \cdot 3=9 \quad 7 \cdot 7=49$

PERFECT SQUARE: a number made by squaring a whole number. \quad Ex: $\quad 16$ is a perfect square because 4^{2} is equal to 16 81 is a perfect square because 9^{2} is equal to 81

CUBED ROOT: a number multiplied by itself $\underline{\underline{\mathbf{3}}}$ times to give you the number under the $\sqrt{\#}$.

Ex: $\quad \sqrt[3]{8}=2$ because $2 \cdot 2 \cdot 2=8$
$\sqrt[3]{-64}=-8$ because $(-8) \cdot(-8) \cdot(-8)=-64$

A NON-PERFECT SQUARE under the radical sign is an IRRATIONAL \#.
Ex: $\sqrt{12}$ Is IRRATIONAL because 12 is not a perfect square.
$\sqrt{48}$ IS IRRATIONAL because 48 is not a perfect square.

SPECIAL NOTE: Square Root is the OPPOSITE operation of Squared / Cubed Root is the OPPOSITE operation of Cubed.

Complete the table listing the perfect squares of the numbers through $20 \times 20 \ldots$. the first 3 have been started for you.

\#	\# x itself	Perfect Square	\#	\# x itself	Perfect Square	\#	\# x itself	Perfect Square	\#	\# x itself	Perfect Square
1	1×1	1	6	6×6		11	11×11		16	16×16	
2	2×2	4	7	7×7		12	12×12		17	17×17	
3	3×3	9	8	8×8		13	13×13		18	18×18	
4	4×4		9	9×9		14	14×14		19	19×19	
5	5×5		10	10×10		15	15×15		20	20×20	

This is NOT a complete list of perfect squares since there are an infinite number of Perfect Squares. It is important to remember that ALL EVEN EXPONENTS are also perfect squares.

$$
\begin{array}{ll|ll|ll|ll|ll}
x^{2} & x \cdot x & x^{4} & x^{2} \cdot x^{2} & x^{6} & x^{3} \cdot x^{3} & x^{8} & x^{4} \cdot x^{4} & x^{10} & x^{5} \cdot x^{5}
\end{array}
$$

It is helpful to have the list of perfect squares handy when simplifying radicals. One of the most common errors is not using the LARGEST perfect square factor to simplify, then not simplifying far enough.

Estimating Radicals: To ESTIMATE a non-perfect square, find the nearest two perfect squares that it falls between. Take the square root of each and those are the two \#s that the imperfect square falls between.

Example:

Estimate $\sqrt{6}$ and decide which whole \# it is closer to. $\begin{gathered}\begin{array}{c}\text { Closest Perfect square } \\ \text { less than } 6\end{array}\end{gathered}>44 \sqrt{6} 9 \rightarrow 4$ square greater than 6
Since the $\sqrt{4}=2$ and $\sqrt{9}=3, \sqrt{6}$ falls between 2 and 3 . It would be closer to 2 because 4 is closer to 6 than 9 is.

Example:

Estimate $\sqrt{106}$ and decide which whole \# it is closer to.

Closest Perfect square

Closest perfect square greater than 106

Since the $\sqrt{100}=10$ and $\sqrt{121}=11, \sqrt{106}$ falls between 10 and 11 . It would be closer to 10 because 100 is closer to 106 than 121 is.

Estimate and decide which whole \# it is closer to.

1. $\sqrt{41}$ Between
\qquad and \qquad closer to \qquad
2. $\sqrt{67}$ Between
\qquad and \qquad closer to \qquad
3. $\sqrt{96}$ Between
\qquad and \qquad closer to \qquad

Rational or Irrational?

| 1. | $\sqrt{4}$ | Rational or Irrational | 3. | .25 | Rational or Irrational | 5. | $\sqrt{81}$ | Rational or Irrational |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | $\sqrt{144}$ | Rational or Irrational | 4. | $\sqrt{12}$ | Rational or Irrational | 6. | $\sqrt{27}$ | Rational or Irrational |

Simplifying Radicals: When you have a radicand that is not a perfect square, you must break it down into simplest radical form. To do this, separate the radicand into two factors as

Parts of a radical: coefficient $\sqrt{\text { radicand }}$

1. $\sqrt{18}$ $\begin{gathered} \sqrt{9} \sqrt{2} \\ 3 \sqrt{2} \end{gathered}$	2. $\sqrt{40}$	3. $\sqrt{108}$	4. $3 \sqrt{8}$ $\begin{gathered} 3 \sqrt{4} \sqrt{2} \\ 3 \cdot 2 \sqrt{2} \\ 6 \sqrt{2} \end{gathered}$	5. $\sqrt{63 x^{4}}$
6. $\frac{1}{4} \sqrt{48}$	7. $8 \sqrt{9 x}$	8. $\begin{aligned} & \sqrt{\frac{4 x^{2}}{36 x}}=\frac{\sqrt{4 x^{2}}}{\sqrt{36 x}} \\ & \frac{2 x}{\sqrt{36} \sqrt{x}}=\frac{2 x}{6 \sqrt{x}} \end{aligned}$	9. $\sqrt{49 \mathrm{x}^{5}}$	10. $\sqrt{\frac{50 x^{2}}{169}}$
11. $\sqrt{0.09}$	12. $\sqrt{\frac{32}{121}}$	13. $\sqrt{\frac{18 x}{49 y^{8}}}$	14. $4 \sqrt{28 \mathrm{x}^{3}}$	15. $\sqrt{48 x^{7} y^{3}}$
16. $\sqrt{\frac{40 m^{3}}{10 n^{4}}}$	17. $\sqrt{36 x^{4} y^{5}}$	18. $3 \sqrt{24 x^{3} y^{7}}$	19. $6 \sqrt{32 x^{6} y}$	20. $\sqrt{\frac{32 x^{5}}{9 y^{8}}}$

*Rationalizing the denominator will be taught later

Notes:

- A coefficient in front gets multiplied AT THE END, once simplified.
- For fractions, simplify the numerator and denominator separately, then reduce, if possible.

