Name:	C	Date:				Period:				
<u>SQUARED:</u>	a number multiplied by itself.	Ex:	8² me	calculate, multiply 8 times 8 = 64						
SQUARE RO	DT (RADICAL): A number that produce	vhen mu	nen multiplied by itself. Ex: $\sqrt{9} = 3$ $\sqrt{49} = 7$							
	The symbol for the squ		because	because						
						3•3 = 9	7 ∙ 7 = 49			
PERFECT SQ	JARE: a number made by squaring a v	· Ex:	Ex: 16 is a perfect square because 4 ² is equal to 16							
				81 is a perfect	square b	ecause 9 ² is	equal to 81			
CUBED ROO	<u>I</u>: a number multiplied by itself <u>3</u> time	the	Ex:	$\sqrt[3]{8} = 2$ because $2 \cdot 2 \cdot 2 = 8$						
	number under the $\sqrt{\#}$.		$\sqrt[3]{-64} = -8$ because (-8)· (-8) · (-8) = -64							
A NON-PERFECT SQUARE under the radical sign is an IRRATIONAL #.										
		E	$\sqrt{1}$	2 Is IRRATIONAL be	cause 12	is not a perf	ect square.			
			$\sqrt{4}$	8 Is IRRATIONAL be	cause 48	is not a perf	ect square.			

SPECIAL NOTE: Square Root is the **OPPOSITE** operation of Squared / Cubed Root is the **OPPOSITE** operation of Cubed.

Complete the table listing the perfect squares of the numbers through 20 x 20.... the first 3 have been started for you.

#	# x itself	Perfect	#	# x itself	Perfect	#	# x itself	Perfect	#	# x itself	Perfect
		Square			Square			Square			Square
1	1 x 1	1	6	6 x 6		11	11 x 11		16	16 x 16	
2	2 x 2	4	7	7 x 7		12	12 x 12		17	17 x 17	
3	3 x 3	9	8	8 x 8		13	13 x 13		18	18 x 18	
4	4 x 4		9	9 x 9		14	14 x 14		19	19 x 19	
5	5 x 5		10	10 x 10		15	15 x 15		20	20 x 20	

This is NOT a complete list of perfect squares since there are an infinite number of Perfect Squares. It is important to remember that ALL EVEN EXPONENTS are also perfect squares.

 $x \cdot x$ | x^4 | $x^2 \cdot x^2$ | x^6 | $x^3 \cdot x^3$ | x^8 | $x^4 \cdot x^4$ | x^{10} | $x^5 \cdot x^5$ x²

It is helpful to have the list of perfect squares handy when simplifying radicals. One of the most common errors is not using the LARGEST perfect square factor to simplify, then not simplifying far enough.

Estimating Radicals: To ESTIMATE a non-perfect square, find the nearest two perfect squares that it falls between. Take the square root of each and those are the two #s that the imperfect square falls between.

Example:

Since the $\sqrt{4}$ = 2 and $\sqrt{9}$ = 3, $\sqrt{6}$ falls between 2 and 3. It would be closer to 2 because 4 is closer to 6 than 9 is.

Example:

*Rationalizing the denominator will be taught later