Evaluate the following expressions by using substitution.

Evaluate for $a=12, b=5, c=13$. 1. $\mathrm{a}^{2}+\mathrm{b}^{2} \mathrm{C}=169$	Evaluate for $\mathrm{a}=7, \mathrm{~b}=24, \mathrm{c}=25$ 3. $a^{2}+b^{2}$	Evaluate for $a=3, b=4, c=5$ 5. $a^{2}+b^{2}$
2. $c^{2}-b^{2}$	4. $\mathrm{c}^{2}-\mathrm{a}^{2}$	6. $c^{2}-b^{2}$

Solve the following equations for x and explain WHY you performed the operation you did to solve the equation.

WHY?

WHY?
WHY?

1. $x+7=43 \quad$ I subtracted because it is
$\frac{-7 \quad-7}{x=36}$$\quad$ the OPPOSITE of addition.
2. $64+x=164$
3.
4. $x-12=18$
5. $4 x-24=48$

Some have been filled in for you.

Perfect Square $1(1 \times 1)$	Perfect Square $36(6 \times 6)$	Perfect Square 121 (11×11)	Perfect Square
4(2×2)			
			361 (19 < 19)
	100 (10 x 10)	225 (15 x 15)	400 (20 x 20)

Note: This is a helpful list, but not a complete list. There is an infinite \# of perfect squares because any \# can be multiplied by itself to get a perfect square.

Solve the following equations for x. Remember, the opposite of squaring a \# is taking the square root.
(taking the square root should ALWAYS be your FINAL step to finding x)

1. $x^{2}+7=43$

-7	-7
$x^{2}=36$	

$x=\sqrt{36}$
$x=6$
2. $64+x^{2}=164$
4. $66+55=x^{2}$
6. $x^{2}=57+87$

