Name:

Date:

Period:

Evaluate the following expressions by using substitution.

Evaluate for a = 12, b = 5, c = 13.	Evaluate for a = 7, b = 24, c = 25	Evaluate for a = 3, b = 4, c = 5
1. a ² +b ² (12) ² + (5) ² = 144 + 25 = 169	3. $a^2 + b^2$	5. $a^2 + b^2$
2. $c^2 - b^2$	4. c ² - a ²	6. c ² - b ²

Solve the following equations for x and explain WHY you performed the operation you did to solve the equation.

		WHY?			WHY?		WHY?
1.	x + 7 = 43 <u>-7 -7</u> x = 36	I subtracted because it is the OPPOSITE of addition.	3.	x – 12 = 18		5.	4x – 24 = 48
2.	64 + x = 164		4.	2x + 10 = 60 $-10 - 10$ $2x = 50$ $2 2$ $x = 25$	First, I subtracted because it is the OPPOSITE of addition, then I divided because it is the OPPOSITE of multiplication	6.	3x – 36 = 24

Refresher...List the perfect squares in order from 1 – 400 (the parenthesis remind you how to find the perfect square). Some have been filled in for you.

Perfect Square	Perfect Square	Perfect Square	Perfect Square
1 (1 × 1)	36 (6 x 6)	121 (11 × 11)	
4 (2 x 2)			
			361 (19 x 19)
	100 (10 x 10)	225 (15 x 15)	400 (20 × 20)

Note: This is a helpful list, but not a complete list. There is an infinite # of perfect squares because any # can be multiplied by itself to get a perfect square.

Solve the following equations for x. Remember, the opposite of squaring a # is taking the square root. (taking the square root should ALWAYS be your FINAL step to finding x)

