Vocabulary: The following examples explain concepts that you should familiarize yourself with.
Squared: a number multiplied by itself.

$$
\begin{array}{ll}
\text { Examples: } & 4^{2} \text { means } 4 \text { squared. To calculate, multiply } 4 \text { times } 4=16 \\
& 8^{2} \text { means } 8 \text { squared. To calculate, multiply } 8 \text { times } 8=64
\end{array}
$$

Square Root (RADICAL): A number that produces a quantity when multiplied by itself. The symbol for the square root is the radical sign, $\sqrt{\#}$.

Examples: $\quad \sqrt{9}=\sqrt{3 \cdot 3}$, so $\sqrt{9}=3$
$\sqrt{49}=\sqrt{7 \cdot 7}$, so $\sqrt{49}=7$
** SPECIAL NOTE: Square Root is the OPPOSITE operation of Squared.
Perfect Square: a number made by squaring a whole number.
Examples: 16 is a perfect square because 4^{2} is equal to 16
81 is a perfect square because 9^{2} is equal to 81

A non-perfect square under the radical sign is an IRRATIONAL \#
Example: $\quad \sqrt{12}$ Is IRRATIONAL because 12 is not a perfect square.
$\sqrt{48}$ Is IRRATIONAL because 48 is not a perfect square.

Complete the table listing the perfect squares of the numbers through $20 \times 20 \ldots$. the first 3 have been started for you.

\#	\# x itself	Perfect Square	\#	\# x itself	Perfect Square	\#	\# x itself	Perfect Square	\#	\# x itself	Perfect Square
1	1×1	1	6	6×6		11	11×11		16	16×16	
2	2×2	4	7	7×7		12	12×12		17	17×17	
3	3×3	9	8	8×8		13	13×13		18	18×18	
4	4×4		9	9×9		14	14×14		19	19×19	
5	5×5		10	10×10		15	15×15		20	20×20	

Please answer the following questions.

1. Is 48 a perfect square?

Why or why not?
2. Is the table above a COMPLETE list of perfect squares?

Why or why not?
3. What is $\sqrt{625}$?

Estimating Radicals

When a number under the radical $(\sqrt{\#})$ is NOT a perfect square, we can ESTIMATE around what \# it is. To figure out what whole \#s an imperfect square is in between, find the nearest two perfect squares. Take the square root of each and those are the two \#s that the imperfect square falls between.
Example: Between which two \#s is $\sqrt{6}$ between?

Since the $\sqrt{4}=2$ and $\sqrt{9}=3, \sqrt{6}$ falls between 2 and 3 . It would be closer to 2 because 4 is closer to 6 than 9 is.
Example: Between which two \#s is $\sqrt{106}$ between?

Since the $\sqrt{100}=10$ and $\sqrt{121}=11, \sqrt{106}$ falls between 10 and 11 . It would be closer to 10 because 100 is closer to 106 than 121 is.

Try these:

1. The expression $\sqrt{41}$ is a number between
\qquad and \qquad
Closer to \qquad
2. The expression $\sqrt{67}$ is a number between
\qquad and \qquad
Closer to \qquad
3. The expression $\sqrt{96}$ is a number between
\qquad and \qquad
Closer to \qquad

Rational or Irrational?

1.	$\sqrt{4}$	Rational	or	Irrational
2.	$\sqrt{144}$	Rational	or	Irrational
3. .25	Rational	or	Irrational	

4. The expression $\sqrt{19}$ is a number between
\qquad and \qquad
Closer to \qquad
5. The expression $\sqrt{8}$ is a number between
\qquad
and
Closer to \qquad
6. The expression $\sqrt{210}$ is a number between
\qquad
Closer to \qquad

4.	$\sqrt{12}$	Rational	or	Irrational
5.	$\sqrt{81}$	Rational	or	Irrational
6.	$\sqrt{27}$	Rational	or	Irrational

