Date:

Vocabulary: The following examples explain concepts that you should familiarize yourself with.

Squared: a number multiplied by itself.									
Examples:	4^2 means 4 squared. To calculate, multiply 4 times 4 = 16								
	8^2 means 8 squared. To calculate, multiply 8 times 8 = 64								
Square Root (RADICAL): A number tha	t produces a quantity when multiplied by itself. The symbol for the square root								
is the radical sign, $\sqrt{\#}$.									
Examples:	$\sqrt{9} = \sqrt{3 \cdot 3}$, so $\sqrt{9} = 3$								
	$\sqrt{49} = \sqrt{7 \cdot 7}$, so $\sqrt{49} = 7$								
** SPECIAL NOTE: Square Root is the OPPOSITE operation of Squared.									
<u>Perfect Square:</u> a number made by squaring a whole number.									
Examples:	16 is a perfect square because 4 ² is equal to 16								
	81 is a perfect square because 9 ² is equal to 81								
A non-perfect square under the radical sign is an IRRATIONAL #									
Example:	$\sqrt{12}$ Is IRRATIONAL because 12 is not a perfect square.								
	$\sqrt{48}$ Is IRRATIONAL because 48 is not a perfect square.								

Complete the table listing the perfect squares of the numbers through 20 x 20.... the first 3 have been started for you.

#	# x itself	Perfect	#	# x itself	Perfect	#	# x itself	Perfect	#	# x itself	Perfect
		Square			Square			Square			Square
1	1 x 1	1	6	6 x 6		11	11 x 11		16	16 x 16	
2	2 x 2	4	7	7 x 7		12	12 x 12		17	17 x 17	
3	3 x 3	9	8	8 x 8		13	13 x 13		18	18 x 18	
4	4 x 4		9	9 x 9		14	14 x 14		19	19 x 19	
5	5 x 5		10	10 x 10		15	15 x 15		20	20 x 20	

Please answer the following questions.

1. Is 48 a perfect square?

Why or why not?

- Is the table above a COMPLETE list of perfect squares? Why or why not?
- 3. What is $\sqrt{625}$?

Estimating Radicals

When a number under the radical ($\sqrt{#}$) is NOT a perfect square, we can ESTIMATE around what # it is. To figure out what whole #s an imperfect square is in between, find the nearest two perfect squares. Take the square root of each and those are the two #s that the imperfect square falls between.

