Solving Radical Equations

A radical equation is an equation in which the variable is hiding inside the radical.

1. Isolate the radical.

2. If the radical is a square root, square both sides. If it is not a square root, raise each side to the appropriate power.
3. Solve for \mathbf{x}. Depending on the problem, you could be solving a linear equation or a quadratic equation. Be sure to use your prior knowledge to solve appropriately.
4. Check for extraneous solution(s). "Extra" roots that are not true solutions of the original radical equation are called extraneous roots and are rejected as answers.

Use the 4 steps above to solve each problem for x on a separate sheet of paper. All of these equations were specifically chosen to illustrate as many different scenarios as possible.

Example 1:	$2 \sqrt{3 x+1}+4=12$	Example 2:	$\sqrt{2 x}+16=10$
Final Answer:		Final Answer:	
Example 3:	Solve for $\mathrm{x} . \mathrm{x}-1=\sqrt{5 \mathrm{x}-9}$	Example 4:	$x-3=\sqrt{30-2 x}$
Final Answer:		Final Answer:	
Example 5:	$\sqrt{5 x+3}=\sqrt{3 x+7}$	Example 6:	$2 \sqrt{x+8}=3 \sqrt{x-2}$
Final Answer:		Final Answer:	
Example 7:	$\sqrt{x+5}=\sqrt{x^{2}-15}$	Example 8:	$\sqrt[3]{5 x-2}=12$
Final Answer:		Final Answer:	

