The Quadratic Formula

The general form of any quadratic equation is $a x^{2}+b x+c=0$ where $a \neq 0$. The quadratic formula can be used for finding the roots of any quadratic equation.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(1) Always make sure your equation is in standard form
(2) Identify a, b and c .
(3) Substitute into the formula and solve. (Be careful of integer signs AND USE PARENTHESIS!!!!!!!)
(4) Write the two roots as separate answers (Not as an ordered pair).
${ }^{* *}$ For irrational answers, leaving the \pm is acceptable. For example, $x=\frac{5 \pm \sqrt{7}}{6}$ would be an accepted answer.

Solve each example on the back using the quadratic formula. Write your answers in simplest radical form.

1. Solve $x^{2}+2 x-1=0$ by using the quadratic formula.
2. Solve $3 x^{2}+2 x-3=0$ by using the quadratic formula.
3. Solve $x^{2}-5 x-36=0$ by using the quadratic formula.
4. Solve $2 x^{2}+7 x=9$ by using the quadratic formula.

The Discriminant

By evaluating the part of the quadratic formula under the radical sign, $b^{2}-4 a c$, called the discriminant, you can determine the number of real solutions a quadratic equation will have. A quadratic can have two, one or no real solutions.

$$
\text { If } b^{2}-4 a c>0
$$

the equation has $\underline{\mathbf{2}}$ real solutions

$$
\begin{gathered}
x^{2}-4 x+3=0 \\
a=1 \quad b=-4 \quad c=3 \\
b^{2}-4 a c \\
(-4)^{2}-4(1)(3) \\
16-12=4
\end{gathered}
$$

Since $b^{2}-4 a c>0$, the equation will have 2 real solutions (2 real solutions means the parabola will intercept the x-axis at $\mathbf{2}$ different points)

$$
\text { If } b^{2}-4 a c=0
$$

the equation has $\underline{1}$ real solution

$$
\begin{gathered}
x^{2}+2 x+1=0 \\
a=1 \quad b=2 \quad c=1 \\
b^{2}-4 a c \\
(2)^{2}-4(1)(1) \\
4-4=0
\end{gathered}
$$

Since $b^{2}-4 a c=0$, the equation will have 1 real solution. (1 real solution means the parabola will intercept the x-axis only ONCE)

$$
\text { If } b^{2}-4 a c<0,
$$

the equation has no real solutions

$$
\begin{gathered}
x^{2}-2 x+2=0 \\
a=1 \quad b=-2 \quad c=2 \\
b^{2}-4 a c \\
(-2)^{2}-4(1)(2) \\
4-8=-4
\end{gathered}
$$

Since $b^{2}-4 a c<0$, the equation will have no real solutions. (0 real solution means the parabola will NOT intercept the x-axis)

