Properties of Real Numbers

1. Commutative Property of Addition: $a+b=b+a$
You can add numbers of a sum in any order.
2. Commutative Property of Multiplication:

$$
a(b)=b(a)
$$

You can multiply numbers of a product in any order.
3. Associative Property of Addition:

$$
(a+b)+c=a+(b+c)
$$

Changing the grouping of numbers will not change the sum.
4. Associative Property of Multiplication

Changing the grouping of numbers will not change the product.
5. Zero is the Additive Identity:

$$
a+0=a \quad 0+a=a
$$

When zero is added to any number, the result is the number itself.
6. Every number, a, has an Additive Inverse, -a .

$$
a+-a=0
$$

When you add a number and its opposite, the result it zero.
7. One is the Multiplicative Identity

$$
a * 1=a
$$

$1 * a=a$
When any number is multiplied by one, the result is the number itself.
8. Every number, a , that is not zero has a Multiplicative Inverse (reciprocal), 1 .

$$
\frac{a}{1} \bullet \frac{1}{a}=1
$$

When you multiply a number and its reciprocal, the result is one.
9. Distributive Property of Multiplication: $\quad a(b+c)=a(b)+a(c)$

When the number outside the parenthesis is shared with EACH of the numbers inside the parenthesis.
10. Closure:

You are given a set of numbers to start. If when you perform the indicated operation(s), your answer is a \# in the set you started with, you have closure. If not, the set is not closed under that operation.

Ex: Given $\{1,2,3,4,5, \ldots\}$
Determine if the set is closed under addition, subtraction, multiplication and division. Addition? Add any two \#s in the set. Do you always get another \# in the given set? If yes, the set is closed under addition. If no, the set is NOT closed under addition.

Repeat the same question for other operations to determine closure.

