Name:

Date:

For problems 1-3, evaluate each piecewise function at the given values of the independent variable.

1.			6x - 1	if x < 0	[a]	f(-3)	[b]	f(0)	[c]	f(4)
	f(x) =	{	7x + 3	if $x \ge 0$						
2.	$f(\mathbf{x}) =$	ſ	$\frac{x^2-9}{x+2}$	lf x ≤ -1	[a]	f(-3)	[b]	f(1)		
	(,,)	l	6	lf x > -1						
3.			2 + x	If x < -4	[a]	f(2)	[b]	f(3)		
	f(x) =	{	-X	If $-4 \le x \le 2$						
		L	$\frac{1}{3}$ X	lf x > 2						

4. When a diabetic takes long-acting insulin, the insulin reaches its peak effect on the blood sugar level in about three hours. This effect remains fairly constant for 5 hours, then declines, and is very low until the next injection. In a typical patient, the level of insulin might be modeled by the following function.

		40t + 100	If $0 \le t \le 3$			
f(t) =	Į	220	lf 3 < t ≤ 8 lf 8 < t ≤ 10			
()	l	-80t + 860				
		60	If $10 < t \le 24$			

Here, f(t) represents the blood sugar level at time t hours after the time of the injection. If a patient takes insulin at 6 am, find the blood sugar level at each of the following times.

•		•					
[a]	7 am	[b]	11 am	[c]	3 pm	[d]	5 pm

For problems 5 - 10, on a separate sheet of paper, write a piecewise function that describes each situation and answer any additional questions asked in the problem.

- 5. For a cellular phone billing plan, \$50 per month buys 400 minutes or less. Additional time costs \$0.30 per minute. Let the monthly cost C(x) be a function of the time x.
- 6. For a cellular phone billing plan, \$60 per month buys 450 minutes or less. Additional time costs \$0.35 per minute. Let the monthly cost C(x) be a function of the time x.
- 7. Income tax is 5% on the first \$50,000 of income or less, and 8% on any income in excess of \$50,000. Let the tax T(x) be a function of the income x.
- 8. In Missouri, income tax is 3.5% on the first \$9,000 of income or less, and 6% on any income in excess of \$9,000. Let the tax T(x) be a function of the income x.
- 9. You have a summer job that pays time and a half for overtime. That means, if you work more than 40 hours in a week, your hourly wage for the extra hours is 1.5 times your normal rate of \$8 per hour.
 - a. How much will you get paid if you work 50 hours?
 - b. How much will you get paid if you work 28 hours?
- 10. During a nine-hour snowstorm it snows at a rate of 1 inch per hour for the first two hours, at a rate of 2 inches per hour for the next six hours, and at a rate of 1 inch per hour for the final hour. Write a piecewise function that gives the depth of the snow during the snowstorm. Graph the function on a separate piece of graph paper (only use the 1st quadrant). How many inches of snow accumulated from the storm?