A set is a collection of objects or elements. A set is represented by listing its elements between \{
\}. Capital letters are used to name sets. The order of the elements is not important.

- This symbol, \in, is used to indicate that an element is a member of a particular set.
- For example, given set $S=\{1,2,3,4,5\}$. $5 \in S$ means that 5 is an element in set S.
- Similarly, $6 \notin S$ means that 6 is NOT a member of S.
- The following are three different types of sets:

Empty set or null set	Finite set	Infinite set:
a set that has no elements. written as $\}$ OR ϕ	a set whose elements can be counted	a set whose elements cannot be counted because there is no end to the set
Dot make the common error of writing the empty set as $\{\phi\}$.		
Examples: The months with 32 days. Counting \#s between $1 \& 2$	Examples: The set of all students in your math class. $\{1,2,3,4,5\}$ $\{x \mid \mathrm{x}$ is a whole \# less than 10$\}$	Examples: The set of counting \#s. The set of points on a straight line. $\{1,2,3,4,5, \ldots\}$

Different Types of Notation

Type of Notation	Example	In words
Roster Form -	$\{6,7,8, \ldots\}$	The set of all integers >5
a list of the elements in $\}$		
Interval Notation -	$[3,7]$	All real \#s ≥ 3 and ≤ 7
Endpoints enclosed by parenthesis and/or brackets.	$(3,7)$	All real \#s >3 and <7
- Brackets INCLUDE the \# (closed interval)	$[3,7]$	All real \#s >3 and ≤ 7
- Parenthesis DO NOT INCLUDE the \# (open interval)		

* ∞ (infinity) is used when an interval has only one endpoint and will always appear next to parenthesis

$$
[-6, \infty) \text { All real \#s greater than or equal to }-6 \quad(-\infty, 2) \text { All real \#s less than } 2
$$

Set Notation -

$\{x \mid x$ is $\}$ which means x such that x is \qquad $\{x \mid x \in$ integers and $x>5\}$
x such that x is an integer >5

Examples that include what a graph would look like and how it would be written as a compound inequality.

Description in Words	Interval Notation	Set Notation	Graph Example	Compound Inequality
The set of all real \#s between 1 and 5 , but not including 1 and 5	$(1,5)$	$\begin{gathered} \{x \mid x \text { is all real \#s }>1 \\ \text { but }<5\} \end{gathered}$		$1<x<5$
The set of all real \#s between 1 and 5 , including 1 and 5	[1, 5]	$\{x \mid x$ is all real $\# s \geq 1$ and $\leq 5\}$	$\underset{0}{1}$	$1 \leq x \leq 5$
The set of all real \#s between 1 and 5, not including 1 but including 5	$(1,5]$	$\begin{gathered} \{x \mid x \text { is all real } \# s>1 \\ \text { but } \leq 5\} \end{gathered}$	$\begin{array}{l\|lllll} 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \end{array}$	$1<x \leq 5$
The set of all real \#s between 1 and 5 , including 1 but not including 5	[1, 5)	$\begin{gathered} \{x \mid x \text { is all real } \# s \geq 1 \\ \text { and }<5\} \end{gathered}$		$1 \leq x<5$
The set of all real \#s greater than 1	$(1, \infty)$	$\{x \mid x$ is all real \#s $>1\}$	$\begin{array}{lllllll} 1 & (1) & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 2 & 3 & 4 & 5 & 6 \end{array}$	$x>1$
The set of all real \#s less than or equal to 5	$(-\infty, 5]$	$\{x \mid x$ is all real \#s $\leq 5\}$	$\begin{array}{llllllll} 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \end{array}$	$x \leq 5$

Write the following inequalities as a compound inequality, using interval notation and using set notation.

Compound Inequality:

Set Notation
3.

Interval:

Compound Inequality:
Interval: \qquad

Set Notation:
5.

Compound Inequality:
Interval:

Set Notation:
7.

Compound Inequality:
Interval:

Set Notation:
9.

Compound Inequality:
Interval:
2.

Compound Inequality:
Interval:

Set Notation:
4.

Compound Inequality:
Interval:

Set Notation:
6.

Compound Inequality:
Interval:

Set Notation:
8.

Compound Inequality:
Interval:

Set Notation:
10.

Compound Inequality:
Interval:

Set Notation:

