Evaluating Negative Exponents

A] Make sure the problem is a fraction to begin with.
(You may just have to put it over a " 1 " to make it a fraction)

B] Change the location of the negative exponent and make the exponent positive. (be careful to just move the term with the negative exponent)

The rule is a $-\mathrm{n}=\frac{1}{\mathrm{a}^{\mathrm{n}}}$

This is what I mean about location...

C] Do the math if you can (reduce or multiply out when possible).

Examples:

Move to bottom
$\frac{5^{-4}}{5^{-2}}=\frac{5^{2}}{5^{4}}=\frac{1}{5^{2}}=\frac{1}{25} \quad 3 . \quad\left(\frac{4}{3}\right)^{-2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$

Flip ENTIRE fraction and make exponent positive
5 is a base. Do not divide!
5. $4(10)^{-2}=\frac{4(10)^{-2}}{1}=\frac{4}{10^{2}}=\frac{4}{100}=\frac{1}{25}$
becomes positive

Let's try a few:

1. 3^{-3}
2. $2 \mathrm{~s}^{-5}$
3. $\frac{\mathrm{x}^{-3}}{\mathrm{x}^{-5}}$
4. $\frac{2 \mathrm{~m}^{-2}}{8 \mathrm{~m}^{6}}$
5. r^{-4}
6. $\left(\frac{2}{5}\right)^{-3}$
7. $3 x^{-3}$
8. $\frac{6 \mathrm{k}^{4}}{7 \mathrm{k}^{-4}}$

Write each expression using a positive exponent.

1. 4^{-5}	2. 5^{-7}	3. m^{-9}	4. s^{-6}
5. f^{-3}	6. $(-2)^{-6}$	7. $(-4)^{-3}$	8. w^{-12}

Evaluate each expression
9. $(-5)^{-5}$
10. 3^{-2}
11. 8^{-3}
12. $(-9)^{-4}$

Write each fraction as an expression using a negative exponent. You do not need to evaluate it.
13. $\frac{1}{12^{3}}$
14. $\frac{1}{81}$
15. $\frac{1}{t^{6}}$
16. $\frac{1}{8^{8}}$

Simplify. Express using positive exponents.

17. $2^{-6} \bullet 2^{3}$	18. $\mathrm{s}^{-5} \bullet \mathrm{~s}^{7}$	19. $\frac{\mathrm{m}^{8}}{\mathrm{~m}^{-4}}$	20. $\frac{10^{8}}{10^{9}}$
21. $\mathrm{y}^{-3} \bullet \mathrm{y}^{3}$	22. $s^{5} \bullet s^{-7}$	23. $\frac{\mathrm{x}^{6}}{\mathrm{x}^{-3}}$	24. $\frac{6^{-4}}{6^{8}}$
25. $\frac{3^{-5}}{3^{-3}}$	26. $\frac{e^{-3}}{e^{-2}}$	27. $\frac{n^{-6}}{n^{4}}$	28. $\frac{j^{-2}}{j^{-2}}$

29. Will these two problems give you the same answer? Explain why or why not. -2^{-4} and $(-2)^{-4}$
