

Evaluating Negative Exponents

Name:

A]

Make sure the problem is a fraction to begin with.

Period:

The rule is a -n = $\frac{1}{2^n}$

Write each expression using a positive exponent.

1.
$$4^{-5}$$
 2. 5^{-7}
 3. m^{-9}
 4. s^{-6}

 5. f^{-3}
 6. $(-2)^{-6}$
 7. $(-4)^{-3}$
 8. w^{-12}

Evaluate each expression

 9. (-5) -5
 10. 3 -2
 11. 8 -3
 12. (-9) -4

Write each fraction as an expression using a negative exponent. You do not need to evaluate it.

13. $\frac{1}{12^3}$	14. $\frac{1}{81}$	15. $\frac{1}{t^6}$	16. $\frac{1}{8^8}$

Simplify. Express using positive exponents.

17. 2 ⁻⁶ ● 2 ³	18. s ⁻⁵ ● s ⁷	19. $\frac{m^8}{m^{-4}}$	20. $\frac{10^8}{10^9}$
21. y ⁻³ ● y ³	22. s ⁵ ● s ⁻⁷	23. $\frac{x^6}{x^{-3}}$	24. $\frac{6^{-4}}{6^8}$
25. $\frac{3^{-5}}{3^{-3}}$	26. $\frac{e^{-3}}{e^{-2}}$	27. $\frac{n^{-6}}{n^4}$	28. $\frac{j^{-2}}{j^{-2}}$

29. Will these two problems give you the same answer? Explain why or why not. -2^{-4} and $(-2)^{-4}$