Multiplying a	nd Dividing Radicals:	Reminder: coefficient $\sqrt{radicand}$
[1]	Multiply or Divide Coefficients – Keep them as coefficients.	
[2]	Multiply or Divide Radicands – Keep them as radicands	
[3]	SIMPLIFY!!!	

Examples:

	√7)(√7)	2.	(2√18)(3√8)	3.	$(\frac{2}{3}\sqrt{24})(9\sqrt{3})$
	\sqrt{t}) ²	5.	(3√ <u>6</u>)²	6.	(5 + $\sqrt{3}$)(4 + $\sqrt{3}$)
	7 <u>2</u> √8	8.	$\frac{8\sqrt{48}}{2\sqrt{3}}$	9.	$\frac{\sqrt{20}}{\sqrt{2}}$
10. $\frac{\sqrt{3}}{\sqrt{3}}$	90 /5	11.	$\frac{\sqrt{98} + \sqrt{18}}{\sqrt{2}}$	12.	$\frac{10\sqrt{8}}{5\sqrt{2}}$

Rationalizing the Denominator: When you have a radical ($\sqrt{}$) left on the **bottom** of a fraction, you must <u>rationalize the</u> <u>denominator</u> (eliminate the radical on the bottom). The simplest way to do this is to multiply <u>**BOTH**</u> the numerator and denominator by the radical in the denominator, forcing a perfect square. When simplified, this eliminates the radical. Consider the following examples that illustrate rationalizing the denominator.

Example 1:	Example 2:	Example 3:		
$\frac{12}{\sqrt{5}}$	$\frac{\sqrt{10}}{\sqrt{11}}$	$\frac{2}{2a\sqrt{5}}$		
$\frac{12}{\sqrt{5}} \bullet \frac{\sqrt{5}}{\sqrt{5}} = \frac{12\sqrt{5}}{\sqrt{25}} = \frac{12\sqrt{5}}{5}$	$\frac{\sqrt{10}}{\sqrt{11}} \bullet \frac{\sqrt{11}}{\sqrt{11}} = \frac{\sqrt{110}}{\sqrt{121}} = \frac{\sqrt{110}}{11}$	$\frac{2}{2a\sqrt{5}} \bullet \frac{\sqrt{5}}{\sqrt{5}} = \frac{2\sqrt{5}}{2a\sqrt{25}} = \frac{2\sqrt{5}}{2a \cdot 5} = \frac{2\sqrt{5}}{10a} = \frac{\sqrt{5}}{5a}$		

You Try:

1. $\frac{8}{\sqrt{3a}}$

2.
$$\frac{3}{2\sqrt{3}}$$