Piecewise functions are functions that are represented by more than one equation. Each equation corresponds to a different part of the domain. To evaluate a Piecewise Function, you would need to determine part of the domain (x values) you are evaluating it for.

This is how the PIECEWISE FUNCTION would be written:

The following are four examples of different PIECEWISE FUNCTIONS

Example 1:

$h(x)= \begin{cases}2 & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}$

- For all values of x that are 1 or less, we use the line $y=2$. We stop at the point $(1,2)$ since for x-values greater than 1 , we use a different line.
- For values of x that are strictly greater than 1 , we use the line $\mathrm{y}=\mathrm{x}$.

Example 3: The Absolute Value Function is a Piecewise Function.
$f(x)= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}$

- For all values of x that are less than 0 , we use the line $y=-x$. We stop at the point $(0,0)$ since for x-values greater than 0 , we use a different line.
- For values of x that are greater than or equal to 0 , we use the line $y=x$.

Example 2:

- For all values of x that are less than -1 , we use the line $y=x+2$.
- For all values of x between $-1 \& 2$ (including $-1 \& 2$), we use $y=x^{2}$.
- For values of x that are strictly greater than 2 , we use the line $y=3$

Example 4:

$$
f(x)= \begin{cases}x-2 & \text { if } x \leq 0 \\ x+3 & \text { if } x>0\end{cases}
$$

- For all values of x that are 0 or less, we use the line $y=x-2$. We stop at the point $(0,-2)$ since for x-values greater than 0 , we use a different line.
- For values of x that are strictly greater than 0 , we use the line $y=x+3$.

Graphing Piecewise Functions: The best way to graph a piecewise function to make a table for each piece of the function using the boundary points as your x-values and graph each piece to the appropriate boundary using proper notation.

