Graphing Absolute Value Equations in the form: $g(x)=a|x-h|+k$
Four major considerations for graphing absolute value equations in vertex form...

1. Finding the vertex: $g(x)=2|x+3|-5$

The opposite of the number inside the brackets is your \underline{x}-value of your vertex and the number added or subtracted to the absolute value is the y-value of your vertex.

The vertex of the above equation is $(-3,-5)$

2. Drawing the "V":

The coefficient in front of x (inside OR outside the brackets), is considered the "slope" and tells you how many units you must move up or down AND right and left. If there is a number BOTH inside AND outside the bracket, see \#4 below to determine the correct slope.
-If the coefficient is 3 , you go up 3 and right and left 1 .
-If the coefficient is -3 , you go down 3 and right and left 1 .
-If the coefficient is $\frac{1}{2}$, you go up 1 and right and left 2 .
Move up or down* AND Both left and right to plot the next sets of points. Repeat to plot several points before extending your lines.
*(Remember the SIGN OUTSIDE the absolute value brackets determines whether you move up or down from the vertex, not the coefficient of x)
3. Finding the VERTEX when you have a coefficient $\neq 1$ INSIDE the absolute value brackets:

The " x " value of the vertex must be CALCULATED when you have a coefficient other than 1 INSIDE the brackets.

$$
g(x)=2|3 x+6|-4
$$

To calculate, set what's between the absolute value bars equal to 0 and solve for x.

$$
\begin{gathered}
3 x+6=0 \\
3 x=-6 \\
x=-2
\end{gathered}
$$

The x -coordinate of the vertex is $\mathbf{- 2}$.

Note: the y-coordinate of the vertex is just the number that's added to the absolute value term, in this case -4 , because when you substitute the x-coordinate the absolute value term will always be 0 .

The vertex is $(-2,-4)$

4. Finding the slope when you have a coefficient INSIDE AND OUTSIDE the absolute value brackets*:

You must distribute to determine the correct slope. Look at the above example. After you plot the vertex, ($-2,-4$), you would go up 6 and right and left 1 to plot the next set of points because you must multiply the 2 by 3 .
*Exception to this is when you have a negative coefficient INSIDE the absolute value brackets (check in calculator).

To find the domain, figure out what \underline{x}-values are appropriate for the function (usually all real numbers)
To find the range, figure out what y-values are appropriate for the function (it helps to look at your vertex)

Consider the following examples:

Example 1: $\quad y=\frac{1}{3}|x|+2$

1. Vertex:
2. No Negative sign in front tells me the " V " goes \qquad .
3. Slope is \qquad , so from the vertex move \qquad and BOTH RIGHT AND LEFT \qquad .

Use Interval Notation to identify:
Domain: \qquad
Range:

Example 3: $\quad y=-\frac{1}{2}|2 x+4|-3$

1. Vertex:
2. Negative sign in front tells me the " V " goes \qquad _.
3. Slope is \qquad , so from the vertex move and BOTH RIGHT AND LEFT \qquad .

Use Interval Notation to identify:
Domain:
Range:

