In your own words, write the meaning of each vocabulary term.

Quadratic Function:

Parabola:

Vertex:

Axis of Symmetry:

Graphing a Quadratic Function in Vertex Form

- 1. Start with the function in vertex form:
- 2. Identify the Vertex. Reminder: (h, k) is the vertex of the parabola. Plot the vertex.
- 3. The line x = h is the axis of symmetry. Draw the axis of symmetry.
- 4. Find two or three points on one side of the axis of symmetry, by substituting your **<u>chosen</u>** x-values into the equation.

For this problem, we chose (to the left of the axis of symmetry):

x = 1	x = 0	x = -1
$y = 3(1 - 2)^2 - 4$	$y = 3(0 - 2)^2 - 4$	y = 3(-1 - 2) ² - 4
y = -1	y = 8	y = 23
Plot (1, -1)	Plot (0, 8)	(-1, 23) doesn't fit

5. Plot the mirror images of these points across the axis of symmetry on the right side. Draw the parabola.

 $y = 3(x - 2)^2 - 4$

$$y = 3(x - 2)^2 - 4$$

 $h = 2 \quad k = -4$
Vertex: (2, -4)

Using the procedure just given, draw the graphs of the following functions WITHOUT USING A GRAPHING CALCULATOR.

