In your own words, write the meaning of each vocabulary term.
Quadratic Function:

Parabola:

Vertex:

Axis of Symmetry:

Graphing a Quadratic Function in Vertex Form

1. Start with the function in vertex form:
2. Identify the Vertex. Reminder: (h, k) is the vertex of the parabola. Plot the vertex.
3. The line $x=h$ is the axis of symmetry. Draw the axis of symmetry.
4. Find two or three points on one side of the axis of symmetry, by substituting your chosen x-values into the equation.

For this problem, we chose (to the left of the axis of symmetry):
$x=1$
$y=3(1-2)^{2}-4$

$y=-1$ | $x=0$ | $x=-1$ |
| :---: | :---: |
| $y=3(0-2)^{2}-4$ | $y=3(-1-2)^{2}-4$ |
| Plot $(1,-1)$ | $y=8$ |
| $y=23$ | |

5. Plot the mirror images of these points across the axis of symmetry on the right side. Draw the parabola.

$$
y=3(x-2)^{2}-4
$$

$$
y=3(x-2)^{2}-4
$$

$$
h=2 \quad k=-4
$$

$$
\text { Vertex: }(2,-4)
$$

$$
x=2 \text { is the axis of symmetry }
$$

Using the procedure just given, draw the graphs of the following functions WITHOUT USING A GRAPHING CALCULATOR.

1. $\mathrm{y}=-2(\mathrm{x}-1)^{2}-1$

2. $y=(x+2)^{2}+2$

3. $y=-(x-4)^{2}+2$

4. $y=4(x+1)^{2}-4$

5. $f(x)=-x^{2}+3$

6. $f(x)=2 x^{2}$

