Factors are numbers that divide evenly into a number with no remainder. Factors multiply to give you a product.
Find the factors of 36 .
$1 \cdot 36$
$2 \cdot 18$ When listing out factors it is helpful to write them out in pairs. Writing
3•12
them in order makes it less likely to forget any.
4•9
$6 \cdot 6$
A prime number is a number that has only 2 factors, 1 and itself. Ex. 2, 3, 5, 7, ...

A composite number is a number that has 3 or more factors. Ex. 4, 6, $9, \ldots$

Finding the Greatest Common Factor of Two Numbers:

Find the GCF $28 \& 42$.

Method 1 - list out the factors of each and find the largest factor common to both.

$\underline{28}$

$1 \cdot 28$
$2 \cdot 14$
4•7
$\underline{42}$
$1 \cdot 42$
$2 \cdot 21$
$3 \cdot 14$
$6 \cdot 7$
$G C F=14$

$$
6 \cdot 7
$$

$$
\mathrm{GCF}=14
$$

Method 2-find the prime factorization of each and multiply the common prime factors.

$$
6
$$

3•2

$$
\mathrm{GCF}=2 \cdot 7=14
$$

New Stuff:

GCF Factoring of Polynomials (Monomial Factoring)

1) Find the Greatest Monomial that is a factor of EACH term.
2) Write it outside the parenthesis.
3) Divide each term by the GCF to determine the "left overs" to be written in parenthesis.

GCF factoring is BACKWARDS DISTRIBUTIVE!!
Example:
GCF Left over after dividing by GCF

Factor the following:

| 1. $7 \mathrm{y}-21$ | 2. $32 \mathrm{x}+\mathrm{x}^{2}$ | 3. $\mathrm{p}+\mathrm{prt}$ |
| :--- | :--- | :--- | :--- |
| 4. $4 \mathrm{x}^{2}+12 \mathrm{y}^{2}$ | $5 . \quad \mathrm{rs} 2 \mathrm{r}$ | |
| 7. $3 x^{4} y^{3} z+6 x^{2} y z^{3}$ | $8 . \quad 16 b^{4} c^{2}-4 b^{2} c^{2}$ | $6 . \quad 3 a^{2} b^{3}-9 a b^{2}$ |

1. $6 x^{3}+21 x$
2. $28 y^{3}+4 a y$
3. $32 a^{2} b-40 a b$
4. $4 a^{2} b c-40 a b$
5. $3 x^{2}+6 x+15$
6. $35 x^{3}-28 x$
7. $2 x y^{2}+15 x^{3} y^{4}$
8. $5 x y^{2}+15 x^{3} y^{4}$
9. $16 r^{2} s^{2}-48 r^{3} s$
10. $2 x^{3}+6 x^{2}-10 x$

Sometimes greatest common factors are more complicated than simple monomials. Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor then combining like terms. (Pay special attention to the subtraction example).

1. $(x+4)(x-1)+(x+4)(2 x-3)$
2. $(x+3)(3 x+3)+(x+3)(5 x-6)$
3. $(2 x-1)(2 x+5)-(2 x-1)((x-2)$
4. $(3 x-1)(2 x-7)-(3 x-1)(x+4)$
