1. Identify the greatest common factor for each of the following sets of monomials.
[a] $6 x^{2}$ and $24 x^{3}$
[b] $15 x$ and $10 x^{2}$
[c] $24 x^{4}$ and $10 x^{2}$
[d] $2 x^{3}, 6 x^{2}$ and $12 x$
[e] $16 t^{2}, 48 t$ and 80
[f] $8 t^{5}, 12 t^{3}$ and $16 t$
2. Which of the following is the greatest common factor of the terms $36 x^{2} y^{4}$ and $24 x y^{7}$?
[a] $12 x^{4}$
[b] $24 x^{2} y^{7}$
[c] $6 x^{2} y^{3}$
[d] $3 x y$
3. Write each of the following as equivalent products of the polynomial's greatest common factor with another polynomial (of the same number of terms). The first is done as an example.
[a] $8 x-28$
[b] $50 x+30$
[c] $24 x^{2}+32 x$
[d] 18-12x

$$
4(2 x-7)
$$

[e] $\quad 6 x^{3}+12 x^{2}-3 x$
[f] $x^{2}-x$
[g] $10 x^{2}+35 x-20$
[h] $21 x^{3}-14 x$
[i] $36 x-8 x^{2}$
[j] $30 x^{3}-75 x^{2}$
[k] $-16 t^{2}-96 t$
[I] $4 t^{3}-32 t^{2}+12 t$
4. Which of the following is not a correct factorization of the binomial $10 x^{2}+40 x$?
[a] $10 x(x+4)$
[b] $10\left(x^{2}+4 x\right)$
[c] $5 x(2 x+4)$
[d] $5 x(2 x+8)$
5. Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor. Watch out for the subtraction problems (b) and (d).
[a] $\quad(x+5)(x+1)+(x+5)(x+8)$
[b] $(2 x-1)(3 x+5)-(2 x-1)(x+4)$
[c] $(x-7)(x-9)+(x-7)(4 x+5)$
[d] $(x+1)(5 x-7)-(x+1)(x-3)$

Applications

6. The area of a rectangle is represented by the polynomial $16 x^{2}+56 x$. The width of the rectangle is given by the binomial $2 x+7$.
[a] Give a monomial expression in terms of x for the length of the rectangle. Show how you arrived at your answer.
[b] If the length of the rectangle is 80 , what is the width of the rectangle? Explain your thinking.

Reasoning

7. Which of the following is not a factor of $4 x^{2}+12 x$?
[a] $x+3$
[b] x
[c] $3 x$
[d] 4
