1. Which equation models the data in the accompanying table?

Time in Hours, x	0	1	2	3	4	5	6
Population, y	5	10	20	40	80	160	320

[a] $y=2 x$
[b] $y=2^{x}$
[c] $y=5\left(2^{x}\right)$
[d] $y=2 x+5$
2. A population of wolves in a county is represented by the equation $P(t)=80(0.98)^{t}$, where t is the number of years since 1998 . Predict the number of wolves in the population in the year 2012.
3. The height, $f(x)$, of a super ball after x bounces is represented by $f(x)=80(0.5)^{x}$. How many times higher is the second bounce than the third bounce?
[a] 8
[b] 4
[c] 2
[d] 16
4. The accompanying graph represents the value of a bond over time. Which type of function does this graph best model?

Value of Bond
[a] quadratic
[c] exponential
[b] trigonometric
[d] logarithmic

5. Which type of function could be used to model the data shown in the accompanying graph?

6. The strength of a medication over time is represented by the equation $y=200(1.5)^{-x}$, where x represents the number of hours since the medication was taken and y represents the number of micrograms per millimeter left in the blood. Which graph best represents this relationship?
[a]

[b]

[c]

[d]

7. Which equation best represents the accompanying graph?

[a] $y=2^{x}$
[b] $y=2^{-x}$
[c] $y=x^{2}+2$
[d] $y=-2^{x}$

Refresher for the back... Exponential Equations can be written in the form:
y-intercept: Location where the graph of the

Identify the y-intercept and growth factor for each equation:

1. $\quad \mathrm{y}=25\left(4^{\mathrm{x}}\right) \quad \mathrm{y}$-intercept $=$
2. $\quad y=3\left(17^{x}\right) \quad y$-intercept $=\mid$
3. $y=2\left(8^{x}\right)$

y-intercept $=$	$4 . \quad y=6\left(3^{x}\right)$	y-intercept $=$
growth factor $=$		

Create the exponential equation from the provided information:
5. y-intercept $=9$
growth factor $=11$
Equation: \qquad
6. y-intercept $=32$
growth factor $=4$
Equation: \qquad
7. y-intercept $=7$
growth factor $=8$

Equation: \qquad
8. y-intercept $=8$
growth factor $=7$

Equation: \qquad
9. What do $x, y, 5$ and 2 represent in the equation $y=5\left(2^{x}\right)$ for the yearly growth of the rabbit population in a farmer's field.
x: \qquad y : \qquad 5: \qquad $2:$ \qquad

How many rabbits will be in the farmer's field after 3 years?
10. In the equation, $y=a b^{x}$, what does the a represent?
[a] the exponent
[b] the growth factor
[c] the linear equation
[d] the y-intercept
11. Identify the growth factor in the following equation: $\mathbf{y = 5 6 (\mathbf { 9 } ^ { \mathrm { x } }) \quad \text { Growth Factor: }}$ \qquad
12. Create an exponential equation using the given information: Growth Factor $=\mathbf{2}$ y-intercept $=\mathbf{7}$ Equation: \qquad
13. In the bird garden at Monongahela Middle School, Mr. Evans planted several Black-eyed Susans one summer. The next summer he noticed that the flowers had reproduced significantly and were taking up a larger portion of the garden. Mr. Evans and his class wrote the following equation to represent the growth of the Black-eyed Susans over time: $\mathbf{n = 1 0 (\mathbf { 3 } ^ { \mathbf { t } })}$

In this equation, n represents the number of flowers after t time in years. Consider the following questions:
a: How many flowers did Mr. Evans and the class plant the first year?

b: What is the growth factor of the Black-eyed Susan flower in the garden?

c: How many flowers will be d : In how many years will in the garden after 5 years? there be 270 flowers in the garden?
14. What is the value of y when $x=6$ for the given relationship? $\mathbf{y = 2 (\mathbf { 3 } ^ { x })}$
15. What is the value of m if $n=1,728$ in the equation: $\quad n=8\left(6^{m}\right)$
16. A newly discovered microbe has a growth factor of 5 for every hour. If we have a petri dish with 4 of the microbes on it, what would the equation be to represent this scenario?

Let $m=$ the number of microbes and $t=$ time in hours
[a] $m=4\left(5^{t}\right)$
[b] $t=4\left(5^{m}\right)$
[c] $m=5\left(4^{t}\right)$
[d] $t=5\left(4^{m}\right)$
17. How many would we expect to see after 9 hours have passed?
[a] 18
[b] 180
[c] 1,310,720
[d] 7,812,500

