Exponential Appreciation (Growth)

$$
y=p(1+r)^{t}
$$

p = Principal
(Initial Amount/y-intercept)
$\frac{\text { Exponential Depreciation (Decay) }}{\mathbf{y}=\mathbf{p (1 - r})^{\mathbf{t}}}$

$$
\mathrm{r}=\text { Rate }
$$

(\% to be changed to a decimal)

$$
\begin{gathered}
\mathbf{t}=\text { Time }{ }^{* *} \\
\text { (Usually in years, but depends on the context } \\
\text { of the question) }
\end{gathered}
$$

Decide whether the function represents exponential growth or decay, then tell by what percent the function is increasing/decreasing.

Write an exponential function to model each situation.

1. Joe drank a cup of coffee that contained 120 mg of caffeine. The caffeine is eliminated from his body at a rate of 9% per hour. Write an exponential function to model the amount of caffeine remaining in Joe's system after x hours.
2. A laptop loses 40% of its resale value each year. Write a function that can be used to determine the value of a laptop after x years if it is currently valued at $\$ 1,500$.
3. In 1960, stamps sold for $\$ 0.05$. The price of stamps increases about 4.5\% per year. Write a function that can be used to find the price of a stamp x years after 1960.
4. A viral video has 450 views. The number of views grows 95% each hour. Write a function to find the number of views the video will have after x hours.
5. The population of a certain animal species declines at a rate of 55% per year. If there are 95 of these animals in a habitat, write a function to show the number of animals in the habitat after x years.
6. An online shopping service launched with 360 members. The number of members increased at a rate of 15% per month. Write a function to find the number of members after x months.
7. A population of 542 pandas is released in a wildlife preserve. The population grows at a rate of 2.5% each year. Write a function that can be used to find the number of pandas in the preserve after x years.
8. A radioactive element decays at a rate of 5% annually. There are 45 grams of the substance presently. Write an equation to find the amount remaining after x years.
9. Bob's Gym had 550 members the year it opened. Membership increased at a rate of 10% per year. Write a function to model the number of members of Bob's Gym x years after it opened.
10. A pie is $325^{\circ} \mathrm{F}$ when it is taken out of the oven and put on a windowsill to cool. The temperature of the pie decreases 7% per minute. Write a function to determine the temperature of the pie after x minutes.

Model Problem: Determine if the interpretation is correct, then justify your answer.

An entrepreneur used the function, $y=256(1.25)^{x}$ to model the number of employees working for her company x years after it was founded.

Interpretation: After one year, her company had 256 employees.

Justify: 256 is the number of employees when the company was founded.

$y=256(1.25)^{x}$	$y=256(1.25)^{1}$
$y=320$	After one year, the company had 320 employees

Determine if each interpretation is correct, then justify your answer.

1. The function, $y=400(0.72)^{\mathrm{h}}$ models the amount of ibuprofen in a patient's system after h hours.

Interpretation: Each hour, the amount of ibuprofen in the patient's system decreases by 28%.
2. The volume of air in a balloon x day safter it is inflated can be modeled by the function, $y=904(0.86)^{x}$.

Interpretation: The volume of the air in the balloon decreases 86% each day.
3. The function, $\mathrm{y}=834(1.1)^{\mathrm{x}}$ gives the number of bald eagles x years after they were added to the endangered

True species list.

Interpretation: The number of bald eagles increases by 11\% each year.

Justify:

| True |
| :---: | :---: |
| or |
| False |$|$| Justify: |
| :--- |
| True
 or
 False |

Justify:

False

1. Due to a drought, a lake's depth has been decreasing at a rate of 2.8% per week. Before the drought, the depth of the lake was 55 meters. Which function can be used to find the depth of the lake d weeks after the drought began?
[a] $\quad I(d)=0.972(55)^{d}$
[b] $\quad I(d)=1.028(55)^{d}$
[c] $\quad I(d)=55(0.972)^{d}$
[d] $\quad I(d)=55(1.028)^{d}$
2. In the year 2010, the world population was approximately 7.05 billion. Each year since 2010 , the world population increased by about 1.15%. Which function models the world population in billions x years after the year 2010?
[a] $p(x)=1.15(7.05)^{x}$
[b] $p(x)=1.15(1.0705)^{x}$
[c] $p(x)=7.05(1.015)^{x}$
[d] $p(x)=7.5(1.0705)^{x}$
3. Sandra used the function $m(x)=3500(0.85)^{x}$ to show the value of her road bike x years after she bought it. What does the 3500 represent?
[a] The value of Sandra's road bike after one year.
[c] The value of Sandra's road bike the year she bought it.
[b] The rate of depreciation of Sandra's road bike.
[d] The number of miles Sandra has ridden her road bike since she bought it.
4. Sam used the function $c(x)=65(0.75)^{x}$ to model the balance in his savings account x days after he deposited his birthday money. Which statement is the best interpretation of one of the values in this function?
[a] Sam's account balance decreases at a rate of 75\% each day.
[b] Sam's account balance increases at a rate of 25\% each day.
[c] The amount in Sam's account after one day is $\$ 65$.
[d] Sam deposited \$65 into his savings account.
