Exponent - A short way of writing multiplication of the same number.

Examples: $5^{2}=5 \times 5=$ \qquad

$$
3^{3}=3 \times 3 \times 3=
$$

An exponent tells us how many times to use the base number as a factor. Reminder:

**If there is no variable, the number is the base.

Anything to the zero power = 1 .

Examples: $5^{0}=1 \quad 100^{\circ}=1 \quad 1,000,000^{\circ}=1$

Write using exponents.

1. $2 \times 2 \times 2 \times 2=$
2. $5(5)(5)=$
3. $10 \cdot 10 \cdot 10 \cdot 10=$

Write each number in standard form.

| 1. 10^{3} | 2. $\left(2 \frac{1}{3}\right)^{2}$ | 3.6^{2} |
| :--- | :--- | :--- | :--- |
| $4 . \quad 19^{0}$ | $5 . \quad \frac{2}{3}$ squared | 6.5^{1} |
| 7.0 .4 cubed | $8.2^{3} \cdot 2^{2}$ | 9.4^{3} |

Find the value of \mathbf{x}.

1. $2^{x}=16$
2. $\mathrm{x}^{3}=8$
3. $10^{\mathrm{x}}=1$
4. $5^{x}=125$
5. $x^{3}=343$

Write each expression using exponents.

1. $3 \cdot 3 \cdot m$	2.	$\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)$
$3 . \quad 2 \cdot d \cdot 5 \cdot d \cdot d \cdot 5$	$4 . \quad p \cdot(-9) \cdot p \cdot(-9) \cdot p \cdot q \cdot q$	
5.	$g \cdot(-7) \cdot(-7) \cdot g \cdot h \cdot(-7) \cdot h$	6.

Evaluate each expression

7. $(-8)^{4}$	8. $\left(\frac{1}{5}\right)^{3}$	9.	
10. $(-2)^{3}+5^{2}$	$11.3^{4}-5^{2}$	$12 .(-2)^{5}-(-2)^{4}$	
13.	$4^{3} \div 2^{3}$	$14.5^{3} \cdot 2^{3}$	$15.1^{7}+(-3)^{4}$

Evaluate each expression.

| 16. $r^{3}-s$, if $r=5$ and $s=4$ | 17. $m^{2}-n^{3}$, if $m=6$ and $n=2$ |
| :--- | :--- | :--- |
| 18. $f-g^{4}$, if $f=3$ and $g=-5$ | 19. $\left(x^{6}-y^{2}\right)^{2}+x^{3}$, if $x=2$ and $y=8$ |

20. Florida has about $2^{2} \cdot 3^{2} \cdot 5^{3}$ islands (over 10 acres). About how many islands is this?
