Compound Inequalities: A compound inequality is an inequality that combines two simple inequalities. They can be in the form of "AND" or "OR".

Compound Inequalities in the Form of "and"

The solution occurs when both inequalities are true at the same time

Compound Inequalities in the Form of "Or"

The solution occurs when either of the inequalities is true

The solution is where the two graphs overlap.

Since the solution is between -1 and 5 , including -1 , rewrite the answer as $-1 \leq x<5$.

Decide whether the provided number is a solution. Circle YES or NO, then explain why or why not?

1. Is 8 a solution to the compound inequality: $x>5$ AND $x<10$

YES
NO Explain:
2. Is 18 a solution to the compound inequality: $x<-15$ OR $x>15$

YES
NO Explain:
3. Is -2 a solution to the compound inequality:

$$
-2 \leq x<3
$$

YES
NO Explain:
4. Is -5 a solution to the compound inequality: Explain:
5. Is 7 a solution to the compound inequality: Explain:
6. Is 4 a solution to the compound inequality: $x<-3$ OR $x>6$

YES
NO Explain:
7. Is 14 a solution to the compound inequality:

$$
0<x<15
$$

YES
NO

Explain:

8. Is -9 a solution to the compound inequality:

$$
x<-7 \text { OR } x>7
$$

YES
NO Explain:

Example 1: $\quad 4 \leq x+2 \leq 8$
$4 \leq x+2$
$-2 \quad-2$
$2 \leq x$
Separate and solve as TWO Inequalities
$x+2 \leq 8$
The answer can be written and graphed as a
$-2 \quad-2$
$x \leq 6$ compound inequality
$2 \leq x \leq 6$

Graph them both on one number line...NOTE: "AND" problems must work in BOTH inequalities to be true

Example 2: $\quad-5 \leq 2 x+3<9$

$-5 \leq 2 x+3$	Separate and solve as TWO Inequalities	$2 \mathrm{x}+3<9$
-3 -3		-3 -3
$-8 \leq 2 x$		$2 \mathrm{x}<6$
	The answer can be written and graphed as a	2
$-4 \leq x$	compound inequality	$x<3$

Graph them both on one number line...NOTE: "AND" problems must work in BOTH inequalities to be true
$-6-5-4-3-2-10123456789$

Solving Compound Inequalities Involving OR

Example 3:

$$
-4+a>1 \text { OR }-4+a<-3
$$

$-4+a>1$		
+4+4	Separate and solve as TWO Inequalities	$-4+a<-3$
$a>5$	$a>5$ OR a <	+4+4

Graph them both on one number line...NOTE: "OR" problems must work in one OR the other

$$
\begin{array}{llllllllllll}
-6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}
$$

Example 4:

$$
2 x \leq 6 \text { OR } 3 x>12
$$

$\frac{2 x \leq 6}{2}$
$x \leq 3$

Separate and solve as TWO
Inequalities
 $x>4$
$x \leq 3$ OR $x>4$
Graph them both on one number line...NOTE: "OR"
problems must work in one OR the other

You Try...Solve and graph your solution on a number line:

1. $-9<x-10<-5$
2. $2+r<12$ OR r $+5>19$
3. $-4 \leq 3 n+5<11$
4. $7 x \geq 21$ OR $2 x<-2$
