Name:

Date:

Compound Inequalities: A **compound inequality** is an inequality that combines two simple inequalities. They can be in the form of "AND" or "OR".

Compound Inequalities in the Form of " and "	Compound Inequalities in the Form of " Or "		
The solution occurs when <u>both</u> inequalities are true at the same time	The solution occurs when <u>e</u>	<mark>either</mark> of the ine	equalities is true
$x \ge -1$ and $x < 5$	x<2 or	<i>x</i> > 6	
-1≤x<5 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10	-10 -9 -8 -7 -6 -5 -4 -3 -2 -1	0 1 2 3 4 5	6 7 8 9 10
The <u>solution</u> is where the two graphs overlap.	The <u>solution</u> is all the values of <i>x</i> that are <i>either</i> less than 2 or greater than 6.		
Since the solution is between -1 and 5, including -1 , rewrite the answer as $-1 \le x < 5$.	open circle at 2, shaded leftopen circle on 6, shaded right		
Decide whether the provided number is a solution. Circle	YES or NO, then explain wh	y or why not?	
 Is 8 a solution to the compound inequality: Explain: 	x > 5 AND x < 10	YES	NO
 Is 18 a solution to the compound inequality: Explain: 	x < -15 OR x > 15	YES	NO
3. Is -2 a solution to the compound inequality: Explain:	-2 ≤ x < 3	YES	NO
 Is -5 a solution to the compound inequality: Explain: 	-10 < x < -5	YES	NO
5. Is 7 a solution to the compound inequality: Explain:	-4 < x < 4	YES	NO
6. Is 4 a solution to the compound inequality: Explain:	x < -3 OR x > 6	YES	NO
7. Is 14 a solution to the compound inequality: Explain:	0 < x < 15	YES	NO
8. Is -9 a solution to the compound inequality: Explain:	x < -7 OR x > 7	YES	NO

Solving Compound Inequalities Involving AND

Example 1:	4 ≤ x	+ 2 ≤ 8	
$4 \leq x + 2$	Separate and solve as TWO Inequalities		$x + 2 \leq 8$ $-2 - 2$
$\frac{-2}{2} \leq x$	compound	The answer can be written and graphed as a compound inequality $2 \le x \le 6$	
 -6 -5 -4 -3 -2 -1 0 1 		-	number lineNOTE: "AND" OTH inequalities to be true
Example 2:	-5 ≤ 2×	(+3<9	
-5 ≤ 2x + 3 <u>-3 -3</u> <u>-8 ≤ 2x</u>	Separate and solve	and solve as TWO Inequalities $2x + 3 < 9$ -3 - 3 2x < 6	
$\frac{1}{2} = \frac{1}{2}$ $-4 \le x$	compound	The answer can be written and graphed as a compound inequality $-4 \le x < 3$	
-6 -5 -4 -3 -2 -1 0 1		-	umber lineNOTE: "AND" OTH inequalities to be true
	Solving Compound Ir	nequalities Involving OR	
xample 3:	-4 + a	> 1 OR -4 + a < -3	
4 + a > 1 <u>4 +4</u> a > 5		Separate and solve as TWO Inequalities a > 5 OR a < 1	
┥╎╡╎┼┼┼┼┼ ┆	23456789	•	ne number lineNOTE: "OR" ork in one OR the other
xample 4:	2>	<≤6 OR 3x > 12	
$\frac{x \le 6}{2}$ $x \le 3$	I	and solve as TWO nequalities	$\frac{3x > 12}{3}$ $x > 4$
 -6 -5 -4 -3 -2 -1 0 1 	x s 2 3 4 5 6 7 8 9	•	ne number lineNOTE: "OR" ork in one OR the other
ou TrySolve and graph your s	solution on a number line:		
′ou TrySolve and graph your s 19 < x − 10 < -5	olution on a number line:	24 ≤ 3n + 5 < 11	