Name:

Date:

Period:

Solving a Quadratic Equation by Completing the Square An equation in which one side is a <u>perfect square trinomial</u> can be easily solved by taking the square root of each side.					
		Leading Coefficient = 1		Leading Coefficient ≠ 1	
		x ² + 8x	- 4 = 0	$4x^2 + 8$	x – 12 = 0
 Isolate the x² and x terms so, move the constant to the other side of the equal sign. 		$x^2 + 8x = 4$		$4x^2 + 8x = 12$	
1a. The leading coefficient must completing the square	be 1 for L	eading coeffi	cient of x ² is 1	Factor out leadi Be ca When we have a coef parenthesis to side Both sides must be Factor the 4 out of <u>E</u>	ng coefficient of 4. areful!! ficient ≠ 1, add a double without the variables. <u>multiplied</u> by 4. Also, <u>BOTH</u> terms on the left.
 Add + to BOTH side sign to KEEP THE EQUATION Fill in the + with the completes the square (half of the coefficient of the squared). 	s of the equal BALANCED. Ha # that e x-term	$x^{2} + 8x + \underline{\qquad}$ alf the middle $\frac{1}{2}(8) = 4$ $x^{2} + 8x + \underline{1}$	= 4 + e term squared: $4^2 = 16$ $\underline{6} = 4 + \underline{16}$	$\underline{4}(x^{2} + 2x + \underline{})$ Half the midd $\frac{1}{2}(2)$ $\underline{4}(x^{2} + 2x + \underline{)}$) = $12 + (4)()$ le term squared: = $1^2 = 1$ 1) = $12 + (4)(1)$
 Factor the perfect square trinomial and simplify other side. 		(x + 4) ² = 20		$4 (x + 1)^{2} = 16$ ***Divide BOTH sides by 4 to <u>ISOLATE</u> the radical <u>BEFORE</u> taking the square root. $(x + 1)^{2} = 4$	
 Take the square root of each side and Solve for x. <u>Note 1:</u> A SQUARE and a SQUARE ROOT cancel each other out <u>Note 2:</u> Remember to consider both plus and minus results. 		$x + 4 = \pm \sqrt{20}$ $\underline{-4} -4$ $x = -4 \pm \sqrt{20}$ Simplify: $\sqrt{20} \longrightarrow \sqrt{4}\sqrt{5} \longrightarrow \pm 2\sqrt{5}$		$ x + 1 = \pm \sqrt{4} \\ -1 -1 \\ x = -1 \pm \sqrt{4} \\ x = -1 + 2 \qquad x = -1 - 2 $	
*** Don't forget that you must ISC <u>before</u> taking the square root o	DLATE the radical X = - f both sides!!	4 + 2√5	$x = -4 - 2\sqrt{5}$	x = 1	x = -3

Let's Try these on the back:

1. $x^2 + 6x + 1 = 0$

- 3. $x^2 + 20x + 40 = 0$
- 5. $-x^2 2x + 24 = 0$

- 2. $x^2 4x 18 = 0$ 4. $x^2 - 2x - 1 = 0$
- 6. 3p² 21 = 6p