Solving a Quadratic Equation by Completing the Square

An equation in which one side is a perfect square trinomial can be easily solved by taking the square root of each side.

1. Isolate the x^{2} and x terms ... so, move the constant to the other side of the equal sign.

1a. The leading coefficient must be 1 for completing the square ...
2. Add + \qquad to BOTH sides of the equal sign to KEEP THE EQUATION BALANCED.

Fill in the + \qquad with the \# that completes the square
(half of the coefficient of the x-term squared).
3. Factor the perfect square trinomial and simplify other side.
4. Take the square root of each side and Solve for x .

Note 1: A SQUARE and a SQUARE ROOT cancel each other out

Note 2: Remember to consider both plus and minus results.
*** Don't forget that you must ISOLATE the radical before taking the square root of both sides!!
$\underline{\text { Leading Coefficient }=1}$

$$
x^{2}+8 x-4=0
$$

$$
x^{2}+8 x=4
$$

Leading coefficient of x^{2} is 1

$x^{2}+8 x+$ \qquad $=4+$ \qquad
Half the middle term squared:

$$
\begin{aligned}
& \frac{1}{2}(8)=4^{2}=16 \\
& x^{2}+8 x+\underline{16}=4+\underline{16}
\end{aligned}
$$

$$
(x+4)^{2}=20
$$

Leading Coefficient $\neq 1$
$4 x^{2}+8 x-12=0$

$$
4 x^{2}+8 x=12
$$

Factor out leading coefficient of 4.

Be careful!!

When we have a coefficient $\neq 1$, add a double parenthesis to side without the variables. Both sides must be multiplied by 4. Also, Factor the 4 out of BOTH terms on the left.

Half the middle term squared:

$$
\begin{aligned}
& \frac{1}{2}(2)=1^{2}=1 \\
& \underline{4}\left(x^{2}+2 x+\underline{1}\right)=12+(\underline{4})(\underline{1})
\end{aligned}
$$

$$
4(x+1)^{2}=16
$$

*** Divide BOTH sides by 4 to ISOLATE the radical BEFORE taking the square root.

$$
(x+1)^{2}=4
$$

$$
\begin{array}{r}
x+4= \pm \sqrt{20} \\
-4 \quad-4 \\
x=-4 \pm \sqrt{20}
\end{array}
$$

$$
x=-4+2 \sqrt{5} \quad x=-4-2 \sqrt{5}
$$

$x=-1+2 \quad x=-1-2$

$$
\begin{gathered}
x+1= \pm \sqrt{4} \\
-1 \quad-1
\end{gathered}
$$

$$
x=-1 \pm \sqrt{4}
$$

$$
x=-1-2
$$

$$
x=-3
$$

Let's Try these on the back:

1. $\mathrm{x}^{2}+6 \mathrm{x}+1=0$
2. $x^{2}+20 x+40=0$
3. $-x^{2}-2 x+24=0$
4. $x^{2}-4 x-18=0$
5. $x^{2}-2 x-1=0$
6. $3 p^{2}-21=6 p$
